Supersymmetry Breaking Triggered by Monopoles

David Curtin

arXiv:1108.4415

In collaboration with Csaba Csáki [Cornell], Vikram Rentala [U. Arizona], Yuri Shirman [UC Irvine], John Terning [UC Davis]

SUSY '11 Parallel Talk Fermilab

August 28, 2011

Motivation

- Always looking for new ways to break SUSY.
 - → The unique characteristics of dynamical monopoles makes them worthy of investigation in this context.
 - Seiberg-Witten methods allow us to find theories with massless monopoles and/or dyons, and include them in model building.
- Light monopoles might play a role in electroweak symmetry breaking (Csaki, Shirman, Terning 2010)
 - --> Problems with calculablity. Toy Models?

(Very) Brief Review:

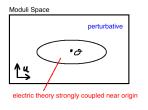
Seiberg-Witten Analysis of

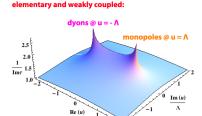
 $\mathcal{N}=$ 2 SU(2) SYM

$\mathcal{N} = 2 SU(2) SYM$

$$\lambda^a$$
 λ^a ψ^a ϕ^a

D-flat:
$$[\phi^{\dagger},\phi]=0$$
 \Longrightarrow Moduli Space parameterized by $u=\frac{1}{2}{\rm Tr}\phi^2.$ $SU(2)\to U(1)$





Some topological objects become massless,

Near monopole singularity: $U(1)_{mag}$ with $W_{eff} \approx (u - \Lambda)M\tilde{M}$.

Upshot

- Can exactly solve for low-energy theory of $\mathcal{N}=2$ SU(2) SYM.
 - \rightarrow generalizes to SU(N) with fundamental flavors $(\Box, \bar{\Box})$ hypers
 - ightarrow cool stuff at higher rank: SU(3) SYM can have simultaneously massless electric & magnetic charges! (Argyres-Douglas Point)
- Can softly break to $\mathcal{N}=1$ to learn about nontrivial $\mathcal{N}=1$ physics, e.g. gaugino condensation as magnetic Meissner effect.
- These methods can give us some information even in $\mathcal{N}=1$ theories.

Application of SW Methods to $\mathcal{N}=$ 1 Theories

The $SU(2)^3$ Model

Apply SW methods to $\mathcal{N} = 1$ theories in the Coulomb phase.

- Can calculate the following as a function of the moduli:
 - holomorphic low-energy U(1) gauge coupling $\tau_{\it eff}$. If singular, we know there are light monopoles or dyons!
 - effective superpotential near the singularity.
- Cannot calculate
 - explicit masses for monopoles/dyons.
 - Kähler potential

This allows us to identify $\mathcal{N}=1$ theories with light monopoles and dyons, and learn something about their low-energy behavior.

$$SU(2)_1$$
 $SU(2)_2$ $SU(2)_3$ 4 moduli space coordinates: Q_1 \square \square $M_i = Q_iQ_i$ Q_3 \square \square $T = Q_1Q_2Q_3$

Similar to N = 2 SU(2) SYM: When

$$\Lambda_1^4 \textit{M}_2 + \Lambda_2^4 \textit{M}_3 + \Lambda_3^4 \textit{M}_1 - \textit{M}_1 \textit{M}_2 \textit{M}_3 + \textit{T}^2 \ \longrightarrow \ \pm 2 \Lambda_1^4 \Lambda_2^4 \Lambda_3^4$$

magnetic or dyonic charges become massless, elementary and weakly coupled.

Near monopole singularity, the effective superpotential is

$$W_{eff} = \left[-M_1 - M_2 - M_3 + \frac{M_1 M_2 M_3}{\Lambda^2} - \frac{T^2}{\Lambda} + 2\Lambda \right] E_+ \tilde{E}_+$$

(Rescaled moduli, and set $\Lambda_i = \Lambda$ for simplicity.)

Effective Theory

- To analyze SUSY-breaking, we need to parameterize our ignorance of the Kahler potential.
- To restrict Kahler using global symmetries, expand around particular point in moduli space:

$$M_1 = 2\Lambda + \delta M_1$$
, $M_2 = \delta M_2$, $M_3 = \delta M_3$, $T = \delta T$.

- A global \mathbb{Z}_4 symmetry (M_i , T charge 1, 2) is broken to \mathbb{Z}_2 . This forbids $\delta M_i \delta T$ Kahler mixing at quadratic order.
- It is possible to define (approximately) canonical fluctuations \tilde{M}_i around $M_1 = 2\Lambda$. The effective superpotential becomes

$$W_{eff} = \left[a \tilde{M}_1 + b \tilde{M}_2 + c \tilde{M}_3 - d rac{T^2}{\Lambda} + \mathrm{H.O.T.}
ight] E_+ \tilde{E}_+.$$

• Can this theory be modified to break SUSY?

Shih model of

SUSY breaking

Shih's O'Raifeartaigh model (2008)

- We will deform the SU(2)³ theory to become this model in a low-energy limit.
- generalized O'Raifeartaigh model with R-charges other than 0, 2, which can break R-symmetry without tuning.
- $W = X(f + \lambda \phi_1 \phi_2) + m_1 \phi_1 \phi_3 + \frac{1}{2} m_2 \phi_2^2$
 - This is generic for $R_X = 2, R_{\phi_1} = -1, R_{\phi_2} = 1, R_{\phi_3} = 3.$
 - Two dimensionless parameters control whether SUSY and R-symmetry can be spontaneously broken in a metastable vacuum:

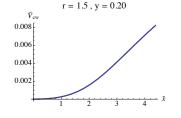
$$y = \frac{\lambda f}{m_1 m_2} , \quad r = \frac{m_2}{m_1},$$

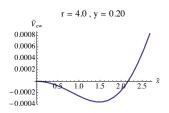
Minimizing the scalar potential

 For y < 1, there exists a stable SUSY-breaking pseudomoduli space

$$\phi_i = 0$$
 , $X = \text{undetermined at tree-level}$ with $|X| < X_{max}$

1-loop quantum corrections generate V_{CW}(|X|):

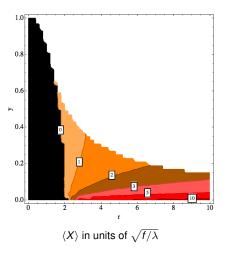




There is also a SUSY-runaway → metastable SUSY.

SUSY and R

For y < 1, the Shih-model can exhibit SUSY. For $r \gtrsim 2$, also have $\not R$.



Scaling Behavior of $V_{\rm CW}$

- The deformed SU(2)³ model will resemble the Shih-model up to uncalculable corrections.
- To ensure that the false vacuum is not destabilized we have to understand how the 1-loop potential scales. Numerically we find
 - $y < y_{max} \approx 2/r$ for SUSY

•
$$\langle X \rangle \approx (1 - y^2) \frac{m_2}{4\lambda}$$

•
$$m_X \sim \frac{1}{3} \frac{\sqrt{\lambda^5 f^3}}{m_1 m_2}$$

$$\bullet \ \left[\frac{\Delta V}{\Delta |X|}\right]_{max} \sim \ \frac{1}{8\pi^2} \, \frac{\lambda^3 f^2}{m_2}$$

 \uparrow This indicates how robustly the pseudomodulus X is stabilized.

SUSY-Breaking triggered by

Monopole Condensation

Deforming the $SU(2)^3$ model

- We will deform the $SU(2)^3$ model to get an effective Shih model of metastable SUSY.
- → We would like the SUSY to vanish in the absence of a monopole condensate.
 - Consider $SU(2)^3$ model around $M_1 = 2\Lambda$:

$$W_{ extit{eff}}pprox \left[a ilde{M}_1+b ilde{M}_2+c ilde{M}_3-drac{ ilde{T}^2}{\Lambda}
ight]E_+ ilde{E}_+.$$

Add some tree-level terms and extra $SU(2)^3$ singlet fields:

$$\delta W = -\mu^2 \tilde{M}_1 + \lambda \tilde{M}_2 \phi_1 \phi_2 + \frac{1}{2} m_2 \phi_2^2 + m_1 \phi_1 \phi_3 + m_Z ZT + m_Y \tilde{M}_3 Y$$

SUSY Mechanism

$$\begin{split} W_{eff} &\approx \left[\frac{a\tilde{M}_1 + b\tilde{M}_2 + c\tilde{M}_3 - d\frac{T^2}{\Lambda}}{\Lambda}\right] E_+ \tilde{E}_+ \\ &- \mu^2 \tilde{M}_1 + \lambda \tilde{M}_2 \phi_1 \phi_2 + \frac{1}{2} m_2 \phi_2^2 + m_1 \phi_1 \phi_3 \\ &+ m_Z ZT + m_Y \tilde{M}_3 Y \end{split}$$

$$F_{\tilde{M}_1} \to \langle E_+ \tilde{E}_+ \rangle \sim \mu^2 \Rightarrow \tilde{M}_2$$
 gets a tadpole $\sim \langle E_+ \tilde{E}_+ \rangle \sim \mu^2$.

(spectator moduli are stabilized by giving them a mass with singlets)

 \Rightarrow effective Shih-model with $X \to \tilde{\textit{M}}_2$, $f \to \sim \langle \textit{E}_+ \tilde{\textit{E}}_+ \rangle$

Metastable SUSY-breaking triggered by monopole condensation!

Electric Theory

- To ensure vacuum stability,
 - $(QQ)_{A,B,C}$ are linear combinations of Q_1^2 , Q_2^2 , Q_3^2 and Λ^2 that become canonical \tilde{M}_i in the IR. Have to be lined up to a precision of $\sim 10^{-2}-10^{-3}$,
 - Stability against Kähler corrections requires $m \ll m_{1,2} \ll \Lambda \ll \Lambda_{UV}$
- $\Lambda \to 0$ restores SUSY.

Other Deformations

It is instructive to embed the Shih model differently into $SU(2)^3$.

$$W_{eff} pprox \left[rac{a ilde{M}_1 + b ilde{M}_2 + c ilde{M}_3 - drac{T^2}{\Lambda}
ight] E_+ ilde{E}_+$$

• Composite ϕ_2 instead of pseudomodulus X:

$$\delta W = -f\tilde{M}_1 + X(\lambda T\phi_1 - \mu^2) + m_1\phi_1\phi_3 + m_Z Z\tilde{M}_2 + m_Y \tilde{M}_3 Y$$

No Good: Not dynamical SUSY.

• Composite ϕ_2 and pseudomodulus X:

$$\delta W = -f\tilde{M}_1 + \lambda \tilde{M}_2 T \phi_1 + m_1 \phi_1 \phi_3 + m_Y \tilde{M}_3 Y$$

No Good: Cannot guarantee stability of vacuum.

Nevertheless, this method of constructing monopole models that break $\mathcal{N}=1$ SUSY should be fairly general.

Conclusion

Conclusion

- Seiberg-Witten methods give us a handle on topological monopoles and open up new model-building possibilities.
- We show that metastable SUSY-breaking can be triggered by monopole condensation.
- These strategies should make it possible to induce SUSY-breaking in a variety of models in the Coulomb phase by obtaining different low-energy SUSY models.
 - → Lots of things one could try!
- It would be very interesting to try and break SUSY in theories with light electric and magnetic charges.